1)气压驱动
使用压力通常在0.4一0.6E可达lMPa.气压驱动的主要优点是气源方便(一般工厂都由压缩空气站供应压缩空气),驱动系统具有缓冲作用,结构简单,成本低,易于保养:主要缺点是功率质量比小,装置体积人,定位精度不高。气压驱动机器人适用于易燃、易爆和灰尘大的场合。 2)液压驱动
液压驱动系统的功率质量比大,驱动平稳,且系统的固有效率高、快速性好,同时液压驱动调速比较简单,能在很大范围内实现无级调速其主要缺点是易漏油,这不仅影响工作稳定性与定位精度,而且污染环境,液压系统需配备压力源及复杂的管路系统,因而成本也较高。
由于弧焊工艺早己在诸多行业中得到普及,弧焊机器人在通用机械、金属结构等许多行业中得到广泛运用。 弧焊机器人是包括各种电弧焊附属装置在内的柔性焊接系统,而不只是一台以规划的速度和姿态携带焊枪移动的单机因而对其性能有着特殊的要求。在弧焊作业中,焊枪应跟踪工件的焊道运动.并不断填充金属形成焊缝。因此运动过程中速度的稳定性和轨迹精度是两项重要指标。一般情况下,焊接速度约取5~5“/轨迹精度约为±(0.2一0巧)mm。由于焊枪的姿态对焊缝质量也有一定影响,因此希望在跟踪焊道的同时,焊枪姿态的可调范围尽量大。其它一些基本性能要求如下所示: a)设定焊接条件(电流、电压、速度等): b)摆动功能 c)坡口煩充功能; d)焊接异常功能检测;
e)焊接传感器(起始焊点检测、焊道跟踪)的接口功能。
汽车工业是点焊机器人系统一个典型的应用领域,在装配每台汽车车体时,大约60%的焊点是由机器人完成。初点焊机器人只用于增强焊作业(往己拼接好的工件上增加焊点),后来为了保证拼接精度,又让机器人完成定位焊作业。这样,点焊机器人逐渐被要求有更全的作业性能,具体来说有: a)安装面积小,工作空间大:
b)快速完成小节距的多点定位(例如每0·3~0.4s移动30一50灬节距后定位); c)定位精度高(士0·25灬)以确保焊接质量 d)持重大(50、1佣),以便携带内装变压器的焊钳; e)内存容量达,示教简单,节省工时;
f)点焊速度与生产线速度相匹配,同时安全可靠性好。
球坐标型
与圆柱坐标结构相比较,这种结构形式更为灵活。但采用同一分辨率的码盘检测角位移时,伸缩关节的线位移分辨率恒定,但转动关节反映在末端操作器上的线位移分辨率则是个变量,增加了控制系统的复杂性.